Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Indian Journal of Medical and Paediatric Oncology ; 2023.
Article in English | Web of Science | ID: covidwho-2309169

ABSTRACT

Penicilliosis is a fungal infection caused by the fungus Penicillium marneffei or Talaromyces marneffei . Penicillosis is commonly seen in immunocompromised patients such as in HIV(AIDS). Herein, we present a case of penicilliosis in an oral cavity cancer patient who was admitted for the management of SARS-CoV-2 infection at our hospital. A 50-year-old male patient operated on for squamous cell carcinoma of the oral cavity who completed his adjuvant chemoradiation 2 months ago, presented to our hospital with dry cough for more than 3 weeks. His nasopharyngeal swab was positive for the severe acute respiratory distress syndrome (SARS-CoV-2). During his hospital stay for SARS-CoV-2 infection, he was diagnosed with disseminated penicilliosis. The patient was treated with intravenous antifungals caspofungin and voriconazole. However, he succumbed to disseminated fungal sepsis. This case highlights the need to consider penicilliosis as a possible opportunistic pathogen, especially in immunocompromised patients such as cancer.

2.
Semin Immunol ; 66: 101728, 2023 03.
Article in English | MEDLINE | ID: covidwho-2262815

ABSTRACT

The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.


Subject(s)
COVID-19 , Mycoses , Humans , Lung , Fungi , Immunity, Innate
3.
Practical Diabetes ; 40(1):45112.0, 2023.
Article in English | EMBASE | ID: covidwho-2241461
4.
Viruses ; 15(2)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216967

ABSTRACT

Viruses contribute significantly to the global decline of honey bee populations. One way to limit the impact of such viruses is the introduction of natural antiviral compounds from fungi as a component of honey bee diets. Therefore, we examined the effect of crude organic extracts from seven strains of the fungal genus Talaromyces in honey bee diets under laboratory conditions. The strains were isolated from bee bread prepared by honey bees infected with chronic bee paralysis virus (CBPV). The antiviral effect of the extracts was also quantified in vitro using mammalian cells as a model system. We found that three extracts (from strains B13, B18 and B30) mitigated CBPV infections and increased the survival rate of bees, whereas other extracts had no effect (B11 and B49) or were independently toxic (B69 and B195). Extract B18 inhibited the replication of feline calicivirus and feline coronavirus (FCoV) in mammalian cells, whereas extracts B18 and B195 reduced the infectivity of FCoV by ~90% and 99%, respectively. Our results show that nonpathogenic fungi (and their products in food stores) offer an underexplored source of compounds that promote disease resistance in honey bees.


Subject(s)
Ascomycota , Coronavirus, Feline , RNA Viruses , Talaromyces , Cats , Bees , Animals , Antiviral Agents/pharmacology , Paralysis , Mammals
5.
Antibiotics (Basel) ; 11(11)2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2109903

ABSTRACT

Canine coronavirus (CCoV), an alphacoronavirus, may cause self-limiting enteric disease in dogs, especially in puppies. The noteworthy plasticity of coronaviruses (CoVs) occurs through mutation and recombination processes, which sometimes generate new dangerous variants. The ongoing SARS-CoV-2 pandemic and the isolation of a novel canine-feline recombinant alphacoronavirus from humans emphasizes the cross-species transmission ability of CoVs. In this context, exploring antiviral compounds is essential to find new tools for fighting against CoVs infections. Fungi produce secondary metabolites, which are often developed as antibiotics, fungicides, hormones, and plant growth regulators. Previous examinations of benzo-γ-pyrone 3-O-methylfunicone (OMF), obtained from Talaromyces pinophilus, showed that it reduces the infectivity of hepatitis C virus and bovine herpesvirus 1. Based on this evidence, this study evaluated the antiviral ability of OMF against CCoV infection in a canine fibrosarcoma (A72) cell line. During CCoV infection, a non-toxic dose of OMF markedly increased features of cell viability. Moreover, OMF induced a significant reduction in virus yield in the presence of an intense downregulation of the viral nucleocapsid protein (NP). These findings occurred in the presence of a marked reduction in the aryl hydrocarbon receptor (AhR) expression. Taken together, preliminary findings suggest that OMF inhibiting AhR shows promising activity against CCoV infection.

SELECTION OF CITATIONS
SEARCH DETAIL